Histone Deacetylase Inhibitor SAHA as Potential Targeted Therapy Agent for Larynx Cancer Cells
نویسندگان
چکیده
Objective: Laryngeal squamous cell carcinoma is one of the most common malignant tumors in the head and neck region. Due to the poor response to chemotherapeutics in patients and low survival rate, successful treatment of larynx cancer still remains a challenge. Therefore, the identification of novel treatment options is needed. We investigated the anticancer effects of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on two different laryngeal cancer cell lines RK33 and RK45. We also studied the antiproliferative action of SAHA in combination with cisplatin and defined the type of pharmacological interaction between these drugs. Materials and Methods: Viability and proliferation of larynx cancer cell lines were studied by methylthiazolyldiphenyl-tetrazolium bromide method and 5-bromo-2-deoxyuridine incorporation assay, respectively. The type of interaction between SAHA and cisplatin was determined by an isobolographic analysis. Western blotting, flow cytometry and quantitative polymerase chain reaction method were used to determine acetylation of histone H3, cell cycle progression and genes expression, respectively. Apoptosis was assessed by means of nucleosomes released to cytosol. Results: SAHA alone or in combination with cisplatin inhibited larynx cancer cells proliferation, whereas displayed relatively low toxicity against normal cells - primary cultures of human skin fibroblasts. The mixture of SAHA with cisplatin exerted additive and synergistic interaction in RK33 and RK45 cells, respectively. We showed that SAHA induced hyperacetylation of histone H3 K9, K14 and K23 and triggered apoptosis. SAHA also caused cell cycle arrest by upregulation of CDKN1A and downregulation of CCND1 encoding p21WAF1/CIP1 and cyclin D1 proteins, respectively. Conclusion: Our studies demonstrated that SAHA may be considered as a potential therapeutic agent against larynx tumors.
منابع مشابه
P-117: Gene Expression and Developmental State of Mouse Cloned Embryos after Treatment with Histone Deacetylase Inhibitor,Suberoylanilide Hydroxamic Acid (SAHA)
Background: It is known that acetylation level of the nuclear histones in cloned embryos is lower compare to normally developed embryos. Histone deacetylas inhibitors (HDACi) with improvement of acetylation level in these embryos can affect embryo quality in pre-implantation stage and expression level of different genes especially developmental genes. Materials and Methods: In this research, SA...
متن کاملThe histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances gemcitabine-induced cell death in pancreatic cancer.
PURPOSE Pancreatic cancer is an aggressive human malignancy that is generally refractory to chemotherapy. Histone deacetylase inhibitors are novel agents that modulate cell growth and survival. In this study, we sought to determine whether a relatively new histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), inhibits pancreatic cancer cell growth. EXPERIMENTAL DESIGN The eff...
متن کاملCytotoxic effects of Jay Amin hydroxamic acid (JAHA), a ferrocene-based class I histone deacetylase inhibitor, on triple-negative MDA-MB231 breast cancer cells.
The histone deacetylase inhibitors (HDACis) are a class of chemically heterogeneous anticancer agents of which suberoylanilide hydroxamic acid (SAHA) is a prototypical member. SAHA derivatives may be obtained by three-dimensional manipulation of SAHA aryl cap, such as the incorporation of a ferrocene unit like that present in Jay Amin hydroxamic acid (JAHA) and homo-JAHA [ Spencer , e...
متن کاملSynergistic activity of the histone deacetylase inhibitor suberoylanilide hydroxamic acid and the bisphosphonate zoledronic acid against prostate cancer cells in vitro.
Bisphosphonates are widely used agents for the treatment of malignant bone disease. They inhibit osteoclast-mediated bone resorption and can have direct effects on cancer cells. In this study, we investigated whether the anticancer activity of the third-generation bisphosphonate zoledronic acid (ZOL) could be enhanced by combination with the histone deacetylase inhibitor suberoylanilide hydroxa...
متن کاملNovel N-hydroxybenzamide histone deacetylase inhibitors as potential anti-cancer agents.
Histone deacetylases (HDACs) are a class of Zn(2+) dependent metalloproteases that play an important role in tumorigenesis. Inhibition of HDACs may be a potential strategy for cancer therapy. This study designed and synthesized a series of novel N-hydroxybenzamide histone deacetylase inhibitors based on the structural features of suberoylanilide hydroxamic acid (SAHA), the first HDAC inhibitor ...
متن کامل